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ABSTRACT

This note considers the question of why some convex quadratic

progrrmming algorithms fail and others succeed when applied to nonconvex

quasi-convex quadrF-tie programs. Several ralgorithms are identified as

being capable of solving quasi-convex quadratic programs using only aj

finite number of arithmetic and logical operations. These algorithms

are all primal feasible, pivot algorithms.
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Si Recent papers by Martos (1971) and Cottle and Ferland (1970a,b)

examine the class of quadratic functions that are quasi-convex and

pseudo-convex on the nonnegative orthant. Ferland (1971) studies the

class of quadratic functions that are quasi-convex and pseudo-convex on

convex sets possessing non-empty inte:!iors.

A quadratic program of the form

(la) minimize 9(x) = cTx + xIDx
2

(Ib) subject to Ax a b

(1c) x a 0,

where the function 9(x) is quesi-convex (pseudo-convex) on the set of

"primal" feasible points X = (x E RO : Ax 2 b, x Z 0] is called 8. quasi-

convex (pseudo-convex) qy.adratic program. There is no loss in generality

in assuming D is a symmetric matrix and this is assumed through this

paper. The Kuhn-Tuckl.r conditions for (1) can be stated in the form

(2a) u= c + Dx- Ay

(2b) v _b + Ax

(2c) u O, x 2tO, v 2 O, y t 0

(2d) UTx 0. vy =O.

Specializing results obtained by Mangasarian (1965, or see 1969) to the

case of a pseudo-convex quadratic program gives the following theorem.

Theorem 1. If the point (ii,•,•) satisfies the Kuhn-Tucker

conditions of a pseudo-convex quadratic program, then the point 3 is a

solution of the quadratic program.
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For completeness, some of the properties of general quasi-convex

and pseudo-convex functions will bh repeated here. A more extensive

discussion of general quasi-co,)vex and pseudo-convex functions may be

found in Mangasarian's (1969) recent book Cri nonlinear programming and

recent results on these classes of functions can be found ir. Ferland

(1-971).

The following statements are equivalent when • is defined on a

convex set X:

(i) cp is a quasi-convex function on the set X,

(ii) for any a: the set txE X : cp(x) < cr is a convex set,

(iii) q,(me + (1-a) x2) : maximum 'qc(x'), cp(xY2)] for x1 , xF E X,

0 :5 1,, and•

- (iv) if cp(xF) q ,(xl) and cp is: a continuously differentiable

:'unction, then Vcp(x 1 ) (:e-x1) - 0.

A contiruously differentiable function cp defined on a set X is pseudo-

convex if for all x1 , xF E X, VCP(ac1) (x 2 -xl) ; 0 implies p(x2 ) Z 9(x2).

If a function is continuously differentiable on a convex set X a-ld it is

a convex function, then it is a pseudo-convex function on X; if it is

pseudo-convex on X, then it is quasi-convex on X.

Quasi-convex and pseudo-convex quadratic functions are very closely

ii

not convex but is quasi-convex on the nonnegative orthant (R,1) and the

r has no row of zeros, then w is pseudo-convex on the set

R'- "[0], which is the nonnegative orthant with the origin removed. After

Martos obtained this result, Cottle and Ferland (1970b) proved the

following theorem, which permits one to replace the origin.

2

A



STheorem 2. If the quadratic function cp(x) i3 not convex but is

quasi-convex on the nonnegative orthant, then it is pseudo-convex on the

nonnegative orthant provided c / O.

Martos (1969) shows that when c = 0, q can be pseudo-convex on R, only

if it is convex on R .

A reasonable computational test to determine if a quadratic function

is Quasi-convex on the nonnegative orthant can be based on the following

theorem characteri-ting quasi-convex quadratic fuactions given by Cottle

and Ferland (1970a).
1

Theorem 3. The quadratic function q(x) = cyx + 1x Dx is rot

c',nvex, but is quasi-convex on R+ if 9nd only if

SI.

and

( ma tr (atrixhas only one negative eigenvalue.

The following result, also Cue to Cottle and Ferland (1970a), is the

basis for a finite sufficien'j +L-st. A finite test is an algorithm

requiring only a finite number of arithmetic and logical operations to

determine if an object (function) possesses a particular property.

Theorem 4. A quadratic function is not convex but is pseudo-convex

on Ra if

(a) 5T 0)

and

e matrix 1 0) has negative leading principal minors.

N -The satisfactions of conditions (a) and (b) of both tbeorems 3 and

can be determined using standard techniques from numerical linear

algebra. These techniques require only a finite number of arithmetic

3g: f



operations. Since it is possible to identify many pseudo-convex and

quasi-convex quadratic programs using a finite test, one would like to

solve them using a finite algorithm, many of which are available for

Ssolving convex quadratic programs, Some of these algorithms may fail

when app ed to a pseudo-convex quadratic program. Martos (1974.2) shows

by example that Wolfe's simplex method for quadratic programming (1959)

is such an algorithm and identifies the Frank-Wolfe algorithm (1956,

Section 6) as ax? algorithm that can be used to solve pseudo-convex

quadratic programs when the set X of primal feasible points is compact.

example of the use of the Frank-Wolfe algorithm to solve a pseudo-convex

I uadratic program Martos makes the following statement.

"Challenged by the finiteness of many convex quadratic
programming methods we, of course, made several attempts to
find a finite method for the quasi-convex case, t '-o. With
no success in this direction one should address himself to
the question: how and why might a method fail? In this
respect we have only a partial answer to the first part (how?)
of the question. To this end, we can show a counterexample,
where the application of the well Miown quadratic simplex
method of Wolfe demonstrates how this one can fail. Other
methods may presumably fail otherwise."

Contrary to the impression one would have after reading the above

statement, there exist several finite algorithms for solving pseudo-

convex quadratic programs. The oldest and best known of these methods

is Beale's quadratic programming algorithm (1955, or see Beale (1959)

F, or (1967)). Another method is Ritter's algorithm for finding a local

minimum (1966, also see Cottle and Mylander (1970)). Two more recent

methods are those by Keller (1969) and Mylander (1971).

Keller's method (1969) is a modification of the Dantzig-Cottle

principal pivoting algorithm for solving linear complementarity

_ _ _ _ _ _ _ _ _ _ 4



problems (1967, also see Cottle (1968)). The Kuhn-Tucker conditions for

a quadratic program are a special case of a linear complementarity

problem. Hence Keller's method is applied to the Kuhn-Tucker conditions

stated earlier in (2). If necessary, a Phase I procedure is performed

to find a point satisfying (2a,b) such that x Z 0 and v ; 0. That i.9,

a primal feasible solution is foiund. In Phase II, primal feasibility

is maintained while a solution satisfying all the Kuhn-Tucker conditions

is sought After finding a primal feasible point, the algorithm can

terminate in only two ways-either with a solution to the Kuhn-Tucker

conditions or with an indication that the objective function ep is not

bounded from below on the feasible set

Mylander's algorithm (19 71) is a modification of Lemke's algorithm

(1965, 1968) for solving linear complementarity problems. As with

Keller's algorithm, a Phase I procedure is first applied, if necessary,

to find a primal feasible point. Then, in what is called the "positive

phEase," the covering vector prescribed by lemke (1965, 1968) is replaced

wit!, -ne that has positive entries co-,ering only the u and y variabll,

that are basic in (2&.,b). The other elements of the covering vector

are zereo. Using this type of covering vector ensures that the rules P:

Lemke's algorithm generate primal feasible points at each step. The

positive pnase terminates either with an indication that the objective

function c is not bounded below on the primal fecsible set X or wi÷h

a solution to the Kuhn-Tucker conditions. Mylander's modification of

Lemke's also has a negative phase which is used to seek additional

solutions of the Kuhn-Tucker conditions of nonconvex quadratic programs,

5I



but the use of the negative phase is not necessary in processing a

convex or pseudo-convex quadratic program.

For a pseudo-convex program any solution of the Kuhn-Tucker conditions

gives a solution to the programming problem. For quadratic programming

problems involving the minimization of functions that are quasi-convex

but not pseudo-convex on the nonnegative orthavnt the point x = 0, if'

feasible, is a stationary point. That is, there exist u, v, y, with

x = 0 satisffying the Kuhn-Tucker conditions (2). In this case x = 0 is

either a saddle point ar a maximizing point. Theorem 2 indicates this

case can occur only when c = 0. Algorithms that will solve pseudo-convex

programs can be used to solve quasi-convex programs by perturbing the c

vector by a small amount; sbme of the zero elements of c being replaced

S•by sna.ll negative numbers.
!:he common feature of all- the algorithms listed earlier for solving

Squasi-convex quadratic programs is Ithey are primal feasible algorithms.
They require a starting point in the feazibl. set X and generate points

in the feasible set X.

Another common feature of the finite algorithms for quasi-convex

quadratic programming is they are pivot algorithms that maintain basic

solutions to a set of linear equations. With the exception of 2eale's

algorithm, the linear equations are the Kuhn-Tucker equations (29,,b) or I
an augmentation of the Kuhn-Tuckcr equations. These algorithms work by

entering a non-basic variable into the basis in place of a basic variable

in seeking to satisfy all the Kuhn-Tucker conditions. Pivot algorithms

for quadratic programming can terminate in only one of four ways:

(i) with a solution to the Kuhn-Tucker conditions,

6
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(ii) with a non-basic variable specified to enter the basis,

but no basic variable specified to leave the basis, this is

called termination on a ray,

(iii) neither member of the (basic variable, non-basic variable)

interchange being specified by the rules of the algorithm,

or

(iv) the specified pivot element specified by a basic variable

and a non-basic variable to be interchanged being of the

wrong sign or zero.

The second case, termination on a ray, corresponds to the form of A

termination occurring in the simplex method for linear programming when

there is an unbounded solution. That is, the non-basic variable can be

assigned any positive value and all the basic variables remain nonnegative.

To determine if a pivot algorithm for convex quadratic programs can

be used to solve quasi-convex quadratic programs it is necessary to show

that the third and fourth forms of termination cannot occur and that the

second form of termination, termination on a ray, indicates either the ¶

objective function is unbounded below on the primal feasible set X or the

set X is empty. If the algorithm works with primal feasible points,

then termination on a ray must be interpretable as an indication that -

the objective function is not bounded from below on X.

Beale's algorithm is an adaptation of the method of steepest _;E

descent that exploits the fact that the derivatives of a quadratic

function are linear. If it terminates on a ray, the objective must go

to minus infinity on that ray. When it terminetes because the rules do

not specify a pivot and if the basic solution at hand is nondegenerate, -3

r - - -- ---- N



then there is no small feasible move that will decrease the objective

function. Farkas' lemma then can be used to show the existence of values

for u and y satisfying the Kuhn-Tuciter conditions. The forth form of

termination cannot arise in Beale's algorithm.

"The principal pivot algorithm of Dantzig and Cottle cannot be

counted on to solve quasi-convex programs because termination on a ray

cannot be interpreted for this class of problems. Also, this algorithm

is predicated on the expectation the main diagonal of the matrix of

coefficients of the non-basic variables, when on the same side of the

equality sign as the constant column, contains only nonnegative elements

after the completion of a major cycle. However, Keller has modified

the rules of the principal pivot algorithm for linear complementarity

problems arising from the Kuhn-Tucker conditions of quadratic programs

to handle the case of negative elements and to find and maintain the

feasibility of the primal variables. Using the fact that only primal

feasible points are generated he is able to show termination on a ray

indicates the objective function is not bounded below on X without

any assumption on the nature of the quadratic form of the objective

function.

Iemke's algorithm makes no structural assumption relative to the

matrix of coefficients of the linear equations to which it is applied.

It can be applied to the Kuhn-Tucker equations arising from a non-

convex quadratic program and termination will oc•ur after a finite

rnumber of pivots either on a ray or with a solution to the Kuhn-Tucker 1:1
conditions. However, for nonconvex quadratic programs termination on a

ray cannot be interpreted. Mylander (1971) gives an example of Iemke's



algorithm terminating on a ray for a quasi-convex quadratic program

possessing a finite solution on a compact feasible set X, Mylander's

modification of Lemke'; algorithm makes it possible to guarantee that

a solution to Kuhn-Tucker conditions resulting from a qaasi-cornex

program will be found or if termination on a ray occurs then the objec-

tive function is not bounded from below on X.

Ritter's algorithm can be viewed as an extension of Houthakker's

quadratic prograrming algorithm (190O, also see van de Panne and Whinston A

(1966)) to produce local minima for nonconvex quadratic programs.

Houthakker's algorithm can fail when applied to a quasi-convex program

because a pivot element expected to be positive might r ,ý be positive.

If the problem is a convex quadratic program it can be proved that the

required pivotal element must always be positive (van de Panne and

Whinston (1966)). Ritter extended the algorithm by providing additional

rules to handle the case of a nonpositive element. that is the desired

pivot element in Houthakker' s algorlthm.

In summary, any programming algorithm converging to a point where

the Kuhn-Tucker conditions are satisfied or giving an indication of the

occurrence of an objective function that is unbounded belcw on the primal

'feasible set X can be used to solve quasi-convex quadratic programs.

Such an algorithm must not reqTire the assimption that the quadratic form

be positive semi-definite to prove that the algorithm does not stop

prematurely. Nor can it make use of the assumption the objective

function is convex on the feasible set to prove that termination on a

ray indicates there is no solution to the Kuhn-Tucker conditions. There

are several known finite quadratic programming algorithm, meeting these

9J
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requirements and they can be used to process quasi-convex quadratic

programs. The common features of the irnown finite algorithms that can

be used to solve quasi-convex programs are that they cre primal feasible,

pivot algorithms.
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